RXD has a tree T, with the size of n. Each edge has a cost.
Define f(S) as the the cost of the minimal Steiner Tree of the set S on tree T.
he wants to divide 2,3,4,5,6,…n into k parts S1,S2,S3,…Sk,
where ⋃Si={2,3,…,n} and for all different i,j , we can conclude that Si⋂Sj=∅.
Then he calulates res=∑ki=1f({1}⋃Si).
He wants to maximize the res.
1≤k≤n≤106
the cost of each edge∈[1,105]
Si might be empty.
f(S) means that you need to choose a couple of edges on the tree to make all the points in S connected, and you need to minimize the sum of the cost of these edges. f(S) is equal to the minimal cost