Responsive image

问题 1540 --区间dp之分石头

1540: 区间dp之分石头

时间限制: 1 Sec  内存限制: 128 MB
提交: 1  解决: 1
[提交][状态][讨论版][命题人:]

题目描述

有N堆石子排成一排,每堆石子有一定的数量。现要将N堆石子并成为一堆。合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求出总的代价最小值。

输入描述

有多组测试数据,输入到文件结束。
每组测试数据第一行有一个整数n,表示有n堆石子。
接下来的一行有n(0< n <200)个数,分别表示这n堆石子的数目,用空格隔开

输出描述

输出总代价的最小值,占单独的一行

样例输入

3
1 2 3
7
13 7 8 16 21 4 18

样例输出

9
239

提示

分析:要求n个石子归并,我们根据dp的思想划分成子问题,先求出每两个合并的最小代价,然后每三个的最小代价,依次知道n个

定义状态dp [ i ] [ j ]为从第i个石子到第j个石子的合并最小代价。

那么dp [ i ] [ j ] = min(dp [ i ] [ k ] + dp [ k+1 ] [ j ])

那么我们就可以从小到大依次枚举让石子合并,直到所有的石子都合并。

这个问题可以用到平行四边形优化,用一个s【i】【j】=k 表示区间 i---j 从k点分开才是最优的,这样的话我们就可以优化掉一层复杂度,变为O(n^2).

区间动态规划问题一般都是考虑,对于每段区间,他们的最优值都是由几段更小区间的最优值得到,是分治思想的一种应用,将一个区间问题不断划分为更小的区间直至一个元素组成的区间,枚举他们的组合 ,求合并后的最优值。

来源

[提交][状态]
ACM算法攻关部